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Modified conjugate gradient method for diagonalizing large matrices

Quanlin Jie* and Dunhuan Liu
Department of Physics, Wuhan University, Wuhan 430072, People’s Republic of China

~Received 16 May 2003; published 24 November 2003!

We present an iterative method to diagonalize large matrices. The basic idea is the same as the conjugate
gradient~CG! method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroducing errors
to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a
subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well
as some previous trial vectors. The gradient, together with the previous trial vectors, play a similar role as the
conjugate gradient of the original CG algorithm. Our numeric tests indicate that this method converges sig-
nificantly faster than the original CG method. And the computational cost of one iteration step is about the
same as the original CG method. It is suitable for first principle calculations.

DOI: 10.1103/PhysRevE.68.056706 PACS number~s!: 02.70.2c, 31.15.Ar, 31.15.2p, 95.75.Pq
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I. INTRODUCTION

In first principle calculations, such as band structure c
culations, atomic and molecular structure calculations, on
the basic tasks is to find several lowest eigenvalues and
corresponding eigenvectors iteratively~and very often self-
consistently! of the effective Hamiltonian@1#. The matrix
dimension of the Hamiltonian may range from tens of tho
sands to several millions, and one may need up to sev
thousands of lowest eigenvectors of the effective Ham
tonian. Diagonalizing matrices on such a scale needs con
erable CPU time and memory. It is one of the major nume
cal costs in the first principle calculations, and the efficien
of the algorithm is crucial for the performances of the who
program. There are many efforts to improve the algorit
@2–6#.

Among widely used algorithms, such as Lanczos@5,7#,
Dividson@8#, relaxation method@4,9#, DIIS ~Direct Inversion
in the Iterative Subspace, which minimizes all matrix e
ments between trial vectors! @10#, and its later version RMM-
DIIS @2,11# ~RMM stands for residual minimization, i.e
minimizing the norm of the residual vector in iterative su
space!, and the conjugate gradient~CG! method @1,2# are
valuable tools to find a set of lowest eigenvectors of a la
matrix. Briefly speaking, to obtain the lowest eigenvector
a matrixH for the general form eigenvalue problem

Huc&5ESuc&, ~1!

the CG method iteratively minimizes the Rayleigh quotie

En5
^fnuHufn&

^fnuSufn&
, ~2!

where S is the overlap matrix, andufn& is a refined trial
vector at stepn. Each iteration step has to search the mi
mization point in the direction of the conjugate gradie
which is a combination of the current gradient and previo
conjugate gradient. One can obtain higher eigenvectors in
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same way, as provided to keep the trial vector orthogona
lower eigenvectors. In practical calculations, the CG meth
is stable and reasonably efficient in many cases, and it is e
to implement. The iteration procedure needs only to store
trial vector and its gradient, as well as one previous con
gate gradient.

The conjugate gradient method is originally designed
minimize positive definite quadratic functions iteratively.
nth step of iteration, the CG method is equivalent to findi
a minimum in ann-dimensional subspace spanned by t
initial trial vector and the subsequentn21 gradients of the
quadratic function. Due to special properties of a quadra
function, one needs only to do the minimization in a tw
dimensional space spanned by current state and the co
gate gradient, which is a combination of current gradient a
last step’s conjugate gradient. In principle, one needs atm
N steps to obtain final solution in ann-dimensional space
Practical calculations usually need more steps due to ro
off errors. The conjugate gradient method is virtually t
most effective method to minimize a quadratic function
eratively. And it is a formally established algorithm to solv
the linear algebraic equation.

For general functions, such as Rayleigh quotient, there
several ways to define the conjugate gradient, and the be
iors of conjugate gradient algorithm are unclear. Howev
near an exact minimum point, any function behaves like
quadratic function. If one starts with a good guess, one m
find the solution very quickly. This partially explains th
successes of the conjugate gradient method in diagonali
a large matrix.

II. THE MODIFIED CONJUGATE ALGORITHM

Our method is based on the following two observation
First, each iteration step of minimizing the Rayleigh qu

tient by CG algorithm is equivalent to finding lowest eige
vector in a two-dimensional subspace. The subspace atnth
step is spanned by the current stateufn& and the conjugate
gradient uFn&. Note that the conjugate gradientuFn& is a
combination of the gradient ofnth step’s Rayleigh quotient
and the (n21)th step’s conjugate gradientuFn21&. One may
expect a better result atnth iterative step by finding the low
©2003 The American Physical Society06-1
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est eigenvector in a three-dimensional subspace spanne
ufn&, uGn&, and uFn21&, where uGn& is the gradient of the
Rayleigh quotient atnth step.

Second, we note that, within the CG algorithm,ufn& is a
combination of ufn21& and uFn21&. Thus the three-
dimensional subspace spanned byufn&, uGn&, anduFn21& is
the same as the subspace spanned byufn&, uGn&, and
ufn21&. This means that one may obtain a better res
ufn11& at nth step by replacing thenth step iteration of CG
algorithm with finding the lowest eigenvector at the thre
dimensional subspace spanned byufn&, uGn&, and ufn21&.
Of course, the result will further improve if one finds th
lowest eigenvector in a larger subspace spanned
ufn&,uGn&, ufn21&, . . . ,ufn2m12&.

The above observations indicate that one may improve
efficiency of the CG algorithm by replacing each iterati
step of the CG algorithm with finding the lowest eigenvec
in a small subspace spanned by the current vectorufn& and
the corresponding gradientuGn&, as well as some previou
vectorsufn21&, ufn22&, . . . . In our numeric tests, the e
fect is significant in many cases. Since diagonalizing a sm
matrix of several dimensions is numerically very cheap, e
step’s numeric cost of the modified version is about the sa
as that of the original CG algorithm.

Practical implementation of the modified conjugate gra
ent method is similar to that of the original CG method. F
finding a single lowest eigenvalue and its corresponding
genvector, it goes through the following steps.

~1! Choose the dimensionM of the iteration subspace, an
the maximum iteration stepNmax. In our numerical test, it is
enough to set the dimensionM<10. In many cases,M53
works quite well. In this case, the three-dimensional s
space is spanned by current trial vectorufn&, the correspond-
ing gradientuGn& and one previous trial vectorufn21& ob-
tained in the last step.

~2! Choose an initial normalized trial vectoruf0&,
^f0uSuf0&51; and calculate the expectation value~Rayleigh
quotient! E05^f0uHuf0&.

~3! For n50,1,2, . . . ,Nmax, do the following iteration
loop to refine the trial vector fromuf0& to uf1&,uf2&, . . . .

~a! Calculate the gradient of the Rayleigh quotient

uGn&5Hufn&2Enufn&. ~3!

Here the refined trial functionufn& is normalized at the end
of each iteration.

~b! In the m-dimensional subspace spanned byuc1&
5uGn&, uc2&5ufn&, uc3&5ufn21&, . . . ,ucm&5ufn2m12&,
calculate the matrix elements of the matrixH, Hi j
5^c i uHuc j&, and the overlap matrix of the basis vectorSi j
5^c i uSuc j&. Here, the dimension ism5n11 if n11<M ,
otherwisem5M , i.e., in the firstM21 loops, the subspac
has onlyn11 basis vector.

~c! Find the lowest eigenvaluee and eigenvectorw for the
general form eigenvalue problem

Hw5eSw. ~4!
05670
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~d! From the above eigenvectorw, construct the refined
trial vector ufn11&,

ufn11&5(
i 51

m

w i uc i&, ~5!

and calculate the expectation value En11
5^fn11uHufn11&.

~e! If uEn112Enu is less than the required value orn
.Nmax, stop the iteration loop, otherwise continue the ite
tion loop.

Impose a maximum iteration step if necessary in ma
cases. For example, in self-consistent calculations, one n
to update the Hamiltonian after some steps of iterations.
trial vector can be chosen, in principle, arbitrarily, provided
is not orthogonal with the lowest eigenvector. However, ev
if the initial trial vector accidently becomes orthogonal to t
lowest eigenvector, due to the numeric roundoff errors in
iterations, one can always arrive at the lowest eigenvect

Check that the convergence is usually testing the diff
ence between the trial vector and its refined version afte
iteration. In our numeric tests, check that the difference
tween two consecutive trial vectors’ Rayleigh quotients a
works well, and it is also numerically faster.

For large matrices, calculation of the gradient is a m
numeric task in each loop of iteration. It involves a multip
cation of matrix and vector. Other numeric costs are mai
the calculation of the matrix elementsHi j and Si j in the
small subspace, as well as the combination of the grad
and previous trial vectors to form a refined trial vector. T
numeric cost of diagonalizing the small matrixH is almost
nothing as compared to other operations. In each loop
iteration, the subspace changes two basis vectors, i.e.
current gradientuGn& replaces the previous oneuGn21&, and
the refined trial vectorufn& replace the old oneufn2m12&.
One needs only to calculate the matrices elementsHi j and
Si j related to the two vectors in each iteration loop. If t
subspace is three dimensional, the numerical cost of on
eration loop is about the same as that of the original
method.

After finding the lowest eigenvector, one can find the s
ond lowest eigenvector in a similar way. One starts with
trial vector orthogonal to the lowest eigenvector, and in
following iterations, gradients of the Rayleigh quotient,
well as the updated trial vectors, must be kept orthogona
the lowest eigenvector. Similarly, after working outk lowest
eigenvectors, thek11 eigenvector can be worked out b
maintaining the orthogonality withk lower eigenvectors.

In this strict sequential procedure, the accuracy of low
eigenvectors affect the higher ones. A remedy to this pr
lem, according to Ref.@2# is rediagonalizing the matrix in the
subspace spanned by the refined trial vectors, which is
ferred as subspace rotation in Ref.@2#. After this subspace
rotation, one can use these resultant vectors as trial vec
for further iteration to improve the accuracy. In practic
implementations, we only iterate every trial vector for som
steps, then perform a subspace rotation. The converg
check is to test the eigenvalues differences between two
secutive subspace rotations. This procedure improves
6-2
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MODIFIED CONJUGATE GRADIENT METHOD FOR . . . PHYSICAL REVIEW E 68, 056706 ~2003!
overall efficiency. In Ref.@2#, there is a detailed discussio
on the role of the subspace rotation.

III. NUMERICAL RESULTS

We test the efficiency of the above outlined algorithm
comparing its performance with other algorithms for vario
matrices. In all cases, the modified CG algorithm outp
forms the original CG algorithm. We observe significant im
provement to the convergence rate in many cases.

As an illustration, we show in Fig. 1, a typical result for
banded matrix with bandwidth 2L. The matrix’s diagonal
element isaii 52Ai 2a, and its off-diagonal elements withi
the bandwidth is a constant,ai j 5a. Due to its simple form
and its relation with Hamiltonian describing the pairing e
fects, this matrix has been investigated by some other
thors, see, e.g., Ref.@4#. Here we choose the matrix’s dimen
sionN5200 000 with half bandwidthL5300, the paramete
a is set to be 20. For finding first eight lowest eigenvecto
the modified CG algorithm converges within 100 steps w
an accuracy of machine’s precision limit. It is more th
three times faster than the original CG algorithm. As a co
parison, we also show the result for the block Lancz
method@7#, as well as the steepest decent method. In Fig
the convergence rate of one iteration step is defined as
relative error of the two consecutive Rayleigh quotien
(En2En21)/@(En1En21)/2#, whereEn21 and En are two
consecutive Rayleigh quotients. When every eigenva
reaches the required accuracy, we perform a subspace
tion and repeat the iteration. Convergence is to test the
responding relative error for every eigenvalue between
consecutive rotations. In our implementation, the maxim
iteration numberNmax5500, i.e., we go at most 500 steps
iteration for each trial vector before performing a subsp
rotation.

In the above calculations, we use a three-dimensiona
eration subspace for the modified CG algorithm, i.e., the s
space is constituted of the current trial vector, its correspo
ing gradient, as well as one previous trial vector. In su
case, each iteration step needs to calculate one gradient
some combinations of the three vectors, as well as solvin

FIG. 1. Convergence rate of the modified conjugate grad
method in comparing with other algorithms.
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three-dimensional eigenvalue problem. From the above a
ment, when the iteration subspace is three-dimensional,
numeric cost of each iteration step is almost the same as
of the original CG method. For the block Lanczos algorith
however, to ensure a reasonable convergence rate, the
tion subspace is 50 dimensional, i.e., one needs to calcu
50 gradients for each iteration step. As per our experien
one step of Lanczos iteration needs longer CPU time than
steps of the modified CG method. Thus, one Lanczos ste
counted as 50 steps in Fig. 1.

In the three-dimensional iteration subspace spanned
$uGn&, ufn&, andufn21&%, the gradient vectoruGn&, together
with the previous trial vectorufn21&, plays the same role a
that of the conjugate gradient in the minimization of a qu
dratic function. This is especially the case when the Rayle
quotient closes to the minimum point, i.e., it is approx
mately a quadratic function of the iteration trial vector.
fact, without the previous trial vectorufn21&, the lowest
eigenvector obtained in the two-dimensional subsp
spanned by$uGn&,ufn&% is just a result of steepest desce
method. By including one previous trial vector which co
tains information about previous gradients, one is able
prevent reintroduction of errors to the refined trial vector
the direction of previous gradients. This is the reason we
this method as modified CG algorithm.

On the other hand, in the context of relaxation algorith
for finding lowest eigenvector@4,9#, the refined trial vector
ufn& at stepn, is an approximation to the lowest eigenvect
of the matrix in the subspace spanned
$uf0&,uG1&,uG2&, . . . ,uGn&%, which is equivalent to the sub
space spanned by$uf0&,uf1&,uf2&, . . . ,ufn21&,ufn&%. Ac-
cording to the relaxation algorithm, to find the lowest eige
vector in the subspace spanned by the above basis vec
one starts from an initial trial vectoruc0&, and minimizes the
Rayleigh quotient iteratively. Each iterative step is to min
mize the Rayleigh quotient in a two-dimensional subsp
spanned by the~updated! trial vector, and one basis vecto
The basis vector can be chosen consecutively from the
one to the last one. After going through all basis vectors,
continues the next round of iteration by choosing the fi
basis vector as next basis vector. This iteration will conve
after going through all basis vectors in several rounds. N
that, if one starts with the first basis vectoruf0& as initial
trial vector, in the two-dimensional subspace spanned by
consecutive basis vectoruf i& and uf i 11&, the second basis
vector uf i 11& minimizes the Rayleigh quotient. After goin
through all basis vector for one round, the refined trial vec
is ufn&, which represents an approximate lowest eigenvec
in the above subspace.

The above two factors explain the rapid convergence
the modified CG algorithm. One consequence of the ab
arguments is that, if we increase the dimension of the ite
tion subspace by including more previous trial vectors,
convergence rate will not increase too much. In other wor
one needs only to do the modified CG algorithm in a sm
iteration space. From our experience, one needs at most
dimensional iteration subspace. In most cases, it is enoug
do the iteration in the three-dimensional iteration subspa
Figure 2 shows our numeric result to confirm this property

t
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Q. JIE AND D. LIU PHYSICAL REVIEW E68, 056706 ~2003!
the modified CG algorithm. Here we do the same calculat
using different iteration subspaces. The filled circle co
nected line is the same as Fig. 1 with three-dimensiona
eration subspace, and the filled square and triangle are re
for 6 dimensional and 12 dimensional iteration subspac
respectively. There is almost no difference within 50 ste
where the convergence rate is about 1028. One needs almos
the same iteration steps to arrive at the final precision. H
ever, the three-dimensional iteration runs faster for each
eration step since it involves less combination and prod
tion of the basis vectors that span the iteration subspace

For some matrices or some properly chosen initial t
vectors, the Rayleigh quotients are approximately quadr
functions of the trial vectors. In such cases, the modified
algorithm converges by almost the same rate as the orig
CG algorithm. And a trial vectorfn at stepn, is an almost
exact minimum in the subspace spanned
$uf0&,uf1&, . . . ,ufn&,uGn&%. We have encountered suc
cases in our numeric tests. In fact, near a minimum,
function behaves like a quadratic function. Some matri
with special structures also make the Rayleigh quotient lik
quadratic function in a quite large region of the vector spa
For such matrices, the CG method is indeed a very effic
method. Of course, in any case the modified CG met
always outperforms the original CG method.

The refined trial vectorufn& becomes closer and closer
the previous step’s trial vectorufn21& when iteration closes
to final solution. In higher dimensional iteration, one m
encounter~numerical! degeneracy of basis vectors that sp
the iteration subspace. This problem is easy to solve.
simple solution is to replace this step by the steepest
scent’s step. Other more sophisticated way is to choose s
independent vectors from the basis vectors and do this
in a small subspace. Both methods are easy to implemen
fact, one can detect the degeneracy when solving the gen
form eigenvalue problem~4!, which can be conveniently
solved by the conventional Choleski-Householder proced
@12#. If there is a degeneracy, the Choleski decomposition
the overlap matrixS returns an error code. When this ha
pens, one can simply redo this step with the steepest
scent’s step. Alternatively, one can use a more sophistic

FIG. 2. Convergence rates of the modified CG algorithm
different dimensions of the iteration subspace.
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Choleski decomposition program that automatically choo
independent basis vector. In doing so, one must adjust
matrix element ofH simultaneously. These two method
need almost the same numerical cost. Of course, the
method is easy to implement. In our numerical tests, ther
almost no degeneracy in the three-dimensional iteration s
space.

It is straightforward to implement preconditioning trea
ment for the modified CG algorithm. Preconditioning trea
ment can significantly improve the convergence rate for m
trices with a large difference between lowest and high
eigenvalues. Due to the fact that there is no need to cons
explicitly the conjugate gradient in the modified CG alg
rithm, it is easier to implement the preconditioning treatme
by directly modifying each step’s gradient. Since precon
tioning treatment depends on specific system, we don’t
into more details about such topic.

The modified CG algorithm shares a common feature w
many other iterative methods of diagonalizing matrices, s
as Lanczos, Dividson, RMM-DIIS, and relaxation method.
all these algorithms, one refines the trial vector in iterat
subspaces. What makes the modified CG algorithm differ
from other algorithms is that the iteration subspaces
spanned by the trial vectors of previous iteration steps,
well as the latest trial vector and its gradient. The trial ve
tors of previous steps are already prepared, one need
calculate one gradient vector~and possibly does some pre
conditioning treatment! to construct the basis vectors of th
iterative subspace. Only two basis vectors of the iterat
subspace are different from previous one, it needs only
date two columns of the matrix elements in the iterati
subspace. By including previous trial vectors into the ite
tive subspace, one avoids reintroducing errors to the t
vectors in the previous directions of gradients. These pr
erties of the iterative subspace make the modified CG a
rithm numeric efficient. And the common feature of the a
gorithm makes it easy to implement.

It is easy to formulate block algorithm for the modifie
CG algorithm to find several lowest eigenvectors simul
neously. For this end, one refines several trial vectors at e
iteration step. Here the iteration subspace includes all cur
trial vectors, their gradients, and all trial vectors of som
previous steps. In this implementation, one needs to find s
eral eigenvectors by solving the general form eigenva
problem~4!. Trial vectors obtained in this way are automa
cally orthogonal with each other, and one needs no additio
subspace rotation.

However, one step of block algorithm usually needs m
floating point operations than sequentially processing e
trial vector and maintaining orthogonality between trial ve
tors by Schmidt orthogonalization method. This is main
because the block algorithm needs more flips to form
matrix elements ofH and the corresponding overlap matr
S. If one needsn0 lowest eigensolutions forn-dimensional
matrix, the block algorithm’s iterative subspace isM5mn0
dimensional withm53,4, . . . .Each step of block algorithm
needs the following floating point operations:~a! n0NL flips
for n0 matrix multiplying vector operations to obtainn0 gra-
dients, whereL<N is the band width of the matrix;~b!

r
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MODIFIED CONJUGATE GRADIENT METHOD FOR . . . PHYSICAL REVIEW E 68, 056706 ~2003!
2(mn0)2N flips for the formation of the matrix elements o
H in the iterative subspace and the corresponding ove
matrixS; ~c! anO@(mn0)3# floating point operation for solv-
ing the general form eigenvalue problem~4!; ~d! 2mn0

2N
flips for combination of themn0 basis vectors to formn0
refined trial vectors. Here, the flips in step~c! is negligible
when n0!N. The total flips of one step block algorithm
s(m,n0 ,N)5n0NL12(mn0)2N12mn0

2N. If n051, the
above floating point operationss(m,1,N)5NL12m2N
12mN is the flips for processing one trial vector in seque
tial algorithm. On the other hand, sequentially process
each trial vector one round needsn0s(m,1,N)14n0

2N flips.
Here the second term is the flips to maintain the orthogo
ity of trial vectors, including making gradients orthogonal
previous trial vectors. Even including subspace rotat
which is performed after some rounds of sequential steps
sequential implementation needs less floating point op
tions than the block algorithm.

If n0 is small, e.g.,n0,10, the difference of flips betwee
block and sequential algorithm is small. The block algorith
may be one choice in such cases. Like the block Lanczoz@7#,
and block Dividson@8#, there are some other ways to for
the iterative subspace to implement the block version
modified CG algorithm. For example, the iterative subsp
may contain only one gradient, plus all the current trial ve
tors and some previous trial vectors. The choice of itera
subspace affects the convergence properties which need
ther investigations. For largen0, e.g.,n0.100, to our expe-
riences, block algorithm need more numeric cost and is
efficient as compared with the above sequential impleme
tion. The dimension of the iteration subspace grows quic
with the number of needed eigenvectors, and one needs m
memory to store the basis vectors and much more CPU
to solve the general from eigenvalue problem~4! which in-
creases drastically with the dimension of the iterative s
space. Since the lowest eigenvector usually converges fa
than the higher ones, the number of iteration steps in a b
n

nt
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algorithm is determined by the vector with the slowest co
vergence rate.

IV. CONCLUSIONS

In summary, in the sense of conjugate gradient algorith
we formulate an iterative method to find a set of lowest
genvalues and eigenvectors of a matrix. This method m
mizes the Rayleigh quotient of a trial vector via the gradie
of the Rayleigh quotient, and at the same time, prevents
introducing errors in the direction of previous gradients. W
realize such idea by refining the trial vectors in a special k
of iteration subspace. Each iteration subspace is spanne
the latest trial vector and the gradient of its Rayleigh qu
tient, as well as some trial vectors of previous steps. E
iteration step is to find lowest eigenvector in the iterati
subspace. The gradient, together with the previous trial v
tor, plays the role of the conventional conjugate gradient
our numerical test, it is usually enough to include only o
previous trial vector, i.e., one needs only refining the tr
vector in a three-dimensional subspace. As compared to
conventional conjugate gradient algorithm, which is d
signed to minimize a general function, the current meth
exploits special properties of eigenvalue problems, and t
converges much faster in many cases. During iterations,
trial vector at the stepn, is an approximate lowest eigenve
tor in the subspace spanned by the initial trial vector ann
subsequent gradient vectors. This is the reason for the r
convergence rate. The easy implementation of this algori
makes it suitable for first principle calculations.
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