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Modified conjugate gradient method for diagonalizing large matrices
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We present an iterative method to diagonalize large matrices. The basic idea is the same as the conjugate
gradient(CG) method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroducing errors
to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a
subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well
as some previous trial vectors. The gradient, together with the previous trial vectors, play a similar role as the
conjugate gradient of the original CG algorithm. Our numeric tests indicate that this method converges sig-
nificantly faster than the original CG method. And the computational cost of one iteration step is about the
same as the original CG method. It is suitable for first principle calculations.
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[. INTRODUCTION same way, as provided to keep the trial vector orthogonal to
lower eigenvectors. In practical calculations, the CG method
In first principle calculations, such as band structure caldis stable and reasonably efficient in many cases, and it is easy
culations, atomic and molecular structure calculations, one dfo implement. The iteration procedure needs only to store the
the basic tasks is to find several lowest eigenvalues and th&al vector and its gradient, as well as one previous conju-
corresponding eigenvectors iterativelgnd very often self- gate gradient.
consistently of the effective Hamiltoniar{1]. The matrix The conjugate gradient method is originally designed to
dimension of the Hamiltonian may range from tens of thou-minimize positive definite quadratic functions iteratively. In
sands to several millions, and one may need up to severalth step of iteration, the CG method is equivalent to finding
thousands of lowest eigenvectors of the effective Hamil-a minimum in ann-dimensional subspace spanned by the
tonian. Diagonalizing matrices on such a scale needs considhitial trial vector and the subsequent-1 gradients of the
erable CPU time and memory. It is one of the major numeri-quadratic function. Due to special properties of a quadratic
cal costs in the first principle calculations, and the efficiencyfunction, one needs only to do the minimization in a two-
of the algorithm is crucial for the performances of the wholedimensional space spanned by current state and the conju-
program. There are many efforts to improve the algorithmgate gradient, which is a combination of current gradient and
[2—6]. last step’s conjugate gradient. In principle, one needs atmost
Among widely used algorithms, such as Lanc#6s7], N steps to obtain final solution in amdimensional space.
Dividson[8], relaxation methof4,9], DIIS (Direct Inversion  Practical calculations usually need more steps due to round
in the Iterative Subspace, which minimizes all matrix ele-off errors. The conjugate gradient method is virtually the
ments between trial vectorgl0], and its later version RMM- most effective method to minimize a quadratic function it-
DIIS [2,11] (RMM stands for residual minimization, i.e., eratively. And it is a formally established algorithm to solve
minimizing the norm of the residual vector in iterative sub-the linear algebraic equation.
space, and the conjugate gradie€G) method[1,2] are For general functions, such as Rayleigh quotient, there are
valuable tools to find a set of lowest eigenvectors of a largeseveral ways to define the conjugate gradient, and the behav-
matrix. Briefly speaking, to obtain the lowest eigenvector ofiors of conjugate gradient algorithm are unclear. However,

a matrixH for the general form eigenvalue problem near an exact minimum point, any function behaves like a
quadratic function. If one starts with a good guess, one may
Hly)=ES¥), (1)  find the solution very quickly. This partially explains the

successes of the conjugate gradient method in diagonalizing
the CG method iteratively minimizes the Rayleigh quotient a large matrix.

_(¢n[H[bn)

(hnlS[n) *

Our method is based on the following two observations.
where S is the overlap matrix, andi¢,,) is a refined trial First, each iteration step of minimizing the Rayleigh quo-
vector at stepn. Each iteration step has to search the mini-tient by CG algorithm is equivalent to finding lowest eigen-
mization point in the direction of the conjugate gradientvector in a two-dimensional subspace. The subspacghat
which is a combination of the current gradient and previousstep is spanned by the current sth#g) and the conjugate
conjugate gradient. One can obtain higher eigenvectors in thgradient|F,). Note that the conjugate gradieff,) is a

combination of the gradient afth step’s Rayleigh quotient,
and the 60— 1)th step’s conjugate gradieff,,_,). One may
*Email address: glie@whu.edu.cn expect a better result ath iterative step by finding the low-
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est eigenvector in a three-dimensional subspace spanned by (d) From the above eigenvectaqr, construct the refined
|on), |Gn), and|F,_1), where|G,) is the gradient of the trial vector|¢, . 1),
Rayleigh quotient ahth step.

Second, we note that, within the CG algorithj,,) is a i
combination of |¢, ;) and |F,_;). Thus the three- |¢’n+1>:i§1 @il i), ®)
dimensional subspace spanned| By), |G,), and|F,_1) is
the same as the subspace spanned|dy), |G,), and and calculate the  expectation value E,,
|#n-1). This means that one may obtain a better result=(¢,  1|H|¢n.1).
|$n.1) atnth step by replacing theth step iteration of CG (e) If |E,;1—Ey,| is less than the required value ar
algorithm with finding the lowest eigenvector at the three->N_, .., stop the iteration loop, otherwise continue the itera-
dimensional subspace spanned|i#y), |G,), and|¢,_1).  tion loop.

Of course, the result will further improve if one finds the  Impose a maximum iteration step if necessary in many
lowest eigenvector in a larger subspace spanned byases. For example, in self-consistent calculations, one needs
|0):|Gn)y [n=1)s - - - | Pn-m2)- to update the Hamiltonian after some steps of iterations. The

The above observations indicate that one may improve theial vector can be chosen, in principle, arbitrarily, provided it
efficiency of the CG algorithm by replacing each iterationis not orthogonal with the lowest eigenvector. However, even
step of the CG algorithm with finding the lowest eigenvectorif the initial trial vector accidently becomes orthogonal to the
in a small subspace spanned by the current veetgr and  lowest eigenvector, due to the numeric roundoff errors in the
the corresponding gradien®,), as well as some previous iterations, one can always arrive at the lowest eigenvector.
vectors| ¢, _1), |¢n_2), ... . In our numeric tests, the ef- Check that the convergence is usually testing the differ-
fect is significant in many cases. Since diagonalizing a smaknce between the trial vector and its refined version after an
matrix of several dimensions is numerically very cheap, eacliteration. In our numeric tests, check that the difference be-
step’s numeric cost of the modified version is about the sameveen two consecutive trial vectors’ Rayleigh quotients also
as that of the original CG algorithm. works well, and it is also numerically faster.

Practical implementation of the modified conjugate gradi- For large matrices, calculation of the gradient is a main
ent method is similar to that of the original CG method. Fornumeric task in each loop of iteration. It involves a multipli-
finding a single lowest eigenvalue and its corresponding eieation of matrix and vector. Other numeric costs are mainly
genvector, it goes through the following steps. the calculation of the matrix elements;; and §;; in the

(1) Choose the dimensiav of the iteration subspace, and small subspace, as well as the combination of the gradient
the maximum iteration stel 4. In our numerical test, itis and previous trial vectors to form a refined trial vector. The
enough to set the dimensidM<10. In many casesyl =3 numeric cost of diagonalizing the small matfik is almost
works quite well. In this case, the three-dimensional subnothing as compared to other operations. In each loop of
space is spanned by current trial vedtoy), the correspond- iteration, the subspace changes two basis vectors, i.e., the
ing gradient|G,,) and one previous trial vectde,_,) ob-  current gradientG,) replaces the previous o€, _,), and
tained in the last step. the refined trial vectote,) replace the old onégp, ).

(2) Choose an initial normalized trial vectofe,), One needs only to calculate the matrices elemefjfsand
(bolS| ¢o)=1; and calculate the expectation valiRayleigh Sj; related to the two vectors in each iteration loop. If the

quotieny Eq=(do|H| o). subspace is three dimensional, the numerical cost of one it-
(3) For n=0,1,2 ... Ny do the following iteration eration loop is about the same as that of the original CG
loop to refine the trial vector fromgg) to [¢1),|d2), - . . . method.
(a) Calculate the gradient of the Rayleigh quotient After finding the lowest eigenvector, one can find the sec-

ond lowest eigenvector in a similar way. One starts with a
trial vector orthogonal to the lowest eigenvector, and in the
|Gn)=H|¢n)—Enlbn)- (3 following iterations, gradients of the Rayleigh quotient, as
well as the updated trial vectors, must be kept orthogonal to

Here the refined trial functioh,) is normalized at the end the lowest eigenvector. Similarly, after working dulowest

of each iteration. eigenvectors, th&+1 eigenvector can be worked out by
(b) In the mdimensional subspace spanned hy;) maintaining the orthogonality witk lower eigenvectors.

=Gy, |2y =|dn) [43)=|dn-1), - thm)=|Prn-ms2)s _ In this strict sequentla[ procedure, the accuracy qf lower

calculate the matrix elements of the matrkd, H;; eigenvectors affect the higher ones. A remedy to this prob-

—(i|H| ;) and the overlap matrix of the basis vectgy €M, according to Ref2] is rediagonalizing the matrix in the
=(il9] lﬂjj>- Here. the dimension imi=n+1 if n+1<M  Subspace spanned by the refined trial vectors, which is re-

otherwisem= M, i.e., in the firstM — 1 loops, the subspace ferred as subspace rotation in REZ]. After this sub_space
has onlyn+ 1 basis vector rotation, one can use these resultant vectors as trial vectors

(c) Find the lowest eigenvalueand eigenvectop for the for further it.eration to improve the accuracy. In practical
general form eigenvalue problem implementations, we only iterate every_tnal vector for some
steps, then perform a subspace rotation. The convergence
check is to test the eigenvalues differences between two con-
He=€Sep. 4) secutive subspace rotations. This procedure improves the
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T ' ' ' " ' " ' " ' three-dimensional eigenvalue problem. From the above argu-

mz T~ Senoralized GG ment, when the iteration subspace is three-dimensional, the
o’ —4— Steepest descent T numeric cost of each iteration step is almost the same as that
10* o, /\ —c— Block Laczos ] of the original CG method. For the block Lanczos algorithm,
£ .- N o 1 however, to ensure a reasonable convergence rate, the itera-
g kkéE&;‘k tion subspace is 50 dimensional, i.e., one needs to calculate
8 10° N . . 50 gradients for each iteration step. As per our experience,
2 ool &Cw B one step of Lanczos iteration needs longer CPU time than 50
3 \w> steps of the modified CG method. Thus, one Lanczos step is
07° \ 1 counted as 50 steps in Fig. 1.
o= | \ \ i In the three-dimensional iteration subspace spanned by
. {IGn), |#n), and|é,_1)}, the gradient vectdiG,), together
O T TR w0 o 20 w0 % &0 4 so  With the previous trial vectofg,_,), plays the same role as
Iteration numbers that of the conjugate gradient in the minimization of a qua-

Ejratic function. This is especially the case when the Rayleigh
quotient closes to the minimum point, i.e., it is approxi-
mately a quadratic function of the iteration trial vector. In
overall efficiency. In Ref[2], therg is a detailed discussion Lail;gn\\//vggt(())lrjt th(iaipnrg(\jno?ns ttrr:il \{Sv(gﬂ?mnééé’io:]; l(;\gs;t)ace
on the role of the subspace rotation. spanned by{|G,),|#,)} is just a result of steepest descent
method. By including one previous trial vector which con-
tains information about previous gradients, one is able to
prevent reintroduction of errors to the refined trial vector in
We test the efficiency of the above outlined algorithm bythe direction of previous gradients. This is the reason we call
comparing its performance with other algorithms for variousthis method as modified CG algorithm.
matrices. In all cases, the modified CG algorithm outper- On the other hand, in the context of relaxation algorithm
forms the original CG algorithm. We observe significant im-for finding lowest eigenvectdi4,9], the refined trial vector
provement to the convergence rate in many cases. |,) at stepn, is an approximation to the lowest eigenvector
As an illustration, we show in Fig. 1, a typical result for a of the matrix in the subspace spanned by
banded matrix with bandwidth[2 The matrix’s diagonal {|¢o),|G1),|G2), ... ,|Gn)}, which is equivalent to the sub-
element isa;; =2./i —a, and its off-diagonal elements within space spanned bjj¢o),| 1), d2), . . . | dn_1).|dn)}. Ac-
the bandwidth is a constard;;=a. Due to its simple form cording to the relaxation algorithm, to find the lowest eigen-
and its relation with Hamiltonian describing the pairing ef- vector in the subspace spanned by the above basis vectors,
fects, this matrix has been investigated by some other awne starts from an initial trial vectdrs,), and minimizes the
thors, see, e.g., Rd#4]. Here we choose the matrix’s dimen- Rayleigh quotient iteratively. Each iterative step is to mini-
sionN= 200 000 with half bandwidth =300, the parameter mize the Rayleigh quotient in a two-dimensional subspace
ais set to be 20. For finding first eight lowest eigenvectorsspanned by théupdatedl trial vector, and one basis vector.
the modified CG algorithm converges within 100 steps withThe basis vector can be chosen consecutively from the first
an accuracy of machine’s precision limit. It is more thanone to the last one. After going through all basis vectors, one
three times faster than the original CG algorithm. As a com-<continues the next round of iteration by choosing the first
parison, we also show the result for the block Lanczosbasis vector as next basis vector. This iteration will converge
method[7], as well as the steepest decent method. In Fig. lafter going through all basis vectors in several rounds. Note
the convergence rate of one iteration step is defined as thbat, if one starts with the first basis vectab,) as initial
relative error of the two consecutive Rayleigh quotients,trial vector, in the two-dimensional subspace spanned by two
(En—En_)/[(En+En_1)/2], whereE,, , andE, are two  consecutive basis vectdw;) and|¢;. ), the second basis
consecutive Rayleigh quotients. When every eigenvalueector|¢;,,) minimizes the Rayleigh quotient. After going
reaches the required accuracy, we perform a subspace rotdtrough all basis vector for one round, the refined trial vector
tion and repeat the iteration. Convergence is to test the cois | ¢,,), which represents an approximate lowest eigenvector
responding relative error for every eigenvalue between twdn the above subspace.
consecutive rotations. In our implementation, the maximum The above two factors explain the rapid convergence of
iteration numbeN,,,= 500, i.e., we go at most 500 steps of the modified CG algorithm. One consequence of the above
iteration for each trial vector before performing a subspacearguments is that, if we increase the dimension of the itera-
rotation. tion subspace by including more previous trial vectors, the
In the above calculations, we use a three-dimensional iteonvergence rate will not increase too much. In other words,
eration subspace for the modified CG algorithm, i.e., the subene needs only to do the modified CG algorithm in a small
space is constituted of the current trial vector, its correspondteration space. From our experience, one needs at most five-
ing gradient, as well as one previous trial vector. In suchdimensional iteration subspace. In most cases, it is enough to
case, each iteration step needs to calculate one gradient, add the iteration in the three-dimensional iteration subspace.
some combinations of the three vectors, as well as solving Rigure 2 shows our numeric result to confirm this property of

FIG. 1. Convergence rate of the modified conjugate gradien
method in comparing with other algorithms.

Ill. NUMERICAL RESULTS
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' ' ' ' ' ' ' Choleski decomposition program that automatically chooses
independent basis vector. In doing so, one must adjust the
. matrix element of H simultaneously. These two methods
need almost the same numerical cost. Of course, the first
method is easy to implement. In our numerical tests, there is
4 almost no degeneracy in the three-dimensional iteration sub-
space.
1 It is straightforward to implement preconditioning treat-
ment for the modified CG algorithm. Preconditioning treat-
ment can significantly improve the convergence rate for ma-
i trices with a large difference between lowest and highest
. eigenvalues. Due to the fact that there is no need to construct
10— - - pos explicitly the conjugate gradient in the modified CG algo-
lteration number rithm, it is easier to implement the preconditioning treatment
= ) by directly modifying each step’s gradient. Since precondi-
' FIG. 2.' Conyergence rgtes qf the modified CG algorithm fortioning treatment depends on specific system, we don’t go
different dimensions of the iteration subspace. into more details about such topic.

The modified CG algorithm shares a common feature with
the modified CG algorithm. Here we do the same calculatiormany other iterative methods of diagonalizing matrices, such
using different iteration subspaces. The filled circle con-as Lanczos, Dividson, RMM-DIIS, and relaxation method. In
nected line is the same as Fig. 1 with three-dimensional itall these algorithms, one refines the trial vector in iterative
eration subspace, and the filled square and triangle are resutebspaces. What makes the modified CG algorithm different
for 6 dimensional and 12 dimensional iteration subspacedrom other algorithms is that the iteration subspaces are
respectively. There is almost no difference within 50 stepspanned by the trial vectors of previous iteration steps, as
where the convergence rate is about 100ne needs almost well as the latest trial vector and its gradient. The trial vec-
the same iteration steps to arrive at the final precision. Howtors of previous steps are already prepared, one needs to
ever, the three-dimensional iteration runs faster for each itealculate one gradient vect¢and possibly does some pre-
eration step since it involves less combination and produceonditioning treatmentto construct the basis vectors of the
tion of the basis vectors that span the iteration subspace. iterative subspace. Only two basis vectors of the iterative

For some matrices or some properly chosen initial trialsubspace are different from previous one, it needs only up-
vectors, the Rayleigh quotients are approximately quadratidate two columns of the matrix elements in the iteration
functions of the trial vectors. In such cases, the modified CGubspace. By including previous trial vectors into the itera-
algorithm converges by almost the same rate as the origindive subspace, one avoids reintroducing errors to the trial
CG algorithm. And a trial vectotp,, at stepn, is an almost vectors in the previous directions of gradients. These prop-
exact minimum in the subspace spanned byerties of the iterative subspace make the modified CG algo-
{ldo),|h1), - .. | dn),|Gn)}. We have encountered such rithm numeric efficient. And the common feature of the al-
cases in our numeric tests. In fact, near a minimum, angorithm makes it easy to implement.
function behaves like a quadratic function. Some matrices It is easy to formulate block algorithm for the modified
with special structures also make the Rayleigh quotient like &G algorithm to find several lowest eigenvectors simulta-
quadratic function in a quite large region of the vector spaceneously. For this end, one refines several trial vectors at each
For such matrices, the CG method is indeed a very efficieniteration step. Here the iteration subspace includes all current
method. Of course, in any case the modified CG methodrial vectors, their gradients, and all trial vectors of some
always outperforms the original CG method. previous steps. In this implementation, one needs to find sev-

The refined trial vectof¢,) becomes closer and closer to eral eigenvectors by solving the general form eigenvalue
the previous step’s trial vectde, ;) when iteration closes problem(4). Trial vectors obtained in this way are automati-
to final solution. In higher dimensional iteration, one may cally orthogonal with each other, and one needs no additional
encounter(numerical degeneracy of basis vectors that spansubspace rotation.
the iteration subspace. This problem is easy to solve. One However, one step of block algorithm usually needs more
simple solution is to replace this step by the steepest ddloating point operations than sequentially processing each
scent’s step. Other more sophisticated way is to choose sontéal vector and maintaining orthogonality between trial vec-
independent vectors from the basis vectors and do this stgprs by Schmidt orthogonalization method. This is mainly
in a small subspace. Both methods are easy to implement. lpecause the block algorithm needs more flips to form the
fact, one can detect the degeneracy when solving the generalatrix elements of<{ and the corresponding overlap matrix
form eigenvalue problen{4), which can be conveniently S. If one needq, lowest eigensolutions fon-dimensional
solved by the conventional Choleski-Householder procedurenatrix, the block algorithm’s iterative subspaceMs=mn,

[12]. If there is a degeneracy, the Choleski decomposition oflimensional wittm=3,4, . .. .Each step of block algorithm
the overlap matrixS returns an error code. When this hap- needs the following floating point operatioria) ngNL flips
pens, one can simply redo this step with the steepest dder ny matrix multiplying vector operations to obtairy gra-
scent’s step. Alternatively, one can use a more sophisticatedients, whereL=<N is the band width of the matrix{b)

Convergence rate

10" |-
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2(mny)2N flips for the formation of the matrix elements of algorithm is determined by the vector with the slowest con-
‘H in the iterative subspace and the corresponding overlapergence rate.

matrix S; (c) anO[ (mny)?] floating point operation for solv-

ing the general form eigenvalue proble@); (d) 2mmngN IV. CONCLUSIONS

flips for combination of themn, basis vectors to formmg
refined trial vectors. Here, the flips in st¢p) is negligible
whenng<<N. The total flips of one step block algorithm is
a(m,ng,N)=ngNL+2(mny)>N+2mmN. If ny=1, the
above floating point operationsr(m,1,N)=NL+2m?N
+2mN is the flips for processing one trial vector in sequen-

In summary, in the sense of conjugate gradient algorithm,
we formulate an iterative method to find a set of lowest ei-
genvalues and eigenvectors of a matrix. This method mini-
mizes the Rayleigh quotient of a trial vector via the gradient
of the Rayleigh quotient, and at the same time, prevents re-
X i A ~introducing errors in the direction of previous gradients. We
tial algprlthm. On the other hand, sequent|a||y2 Processingejize sucg:]h idea by refining the trial \Eectors inga special kind
each trial vector one round needgo(m,1N) +4ngN flips. ¢ jteration subspace. Each iteration subspace is spanned by
Here the second term is the flips to maintain the orthogonalg,q |atest trial vector and the gradient of its Rayleigh quo-
ity of trial vectors, including making gradients orthogonal 10 tient a5 well as some trial vectors of previous steps. Each
previous ftrial vectors. Even including subspace rotationeration step is to find lowest eigenvector in the iteration
which is performed after some rounds of sequential steps, thg hspace. The gradient, together with the previous trial vec-
sequential implementation needs less floating point operay, plays the role of the conventional conjugate gradient. In
tions than the block algorithm. _ our numerical test, it is usually enough to include only one

If n is small, e.9.no<<10, the difference of flips between ,.eyious trial vector, i.e., one needs only refining the trial
block and sequential algorithm is small. The block algorithmyector in a three-dimensional subspace. As compared to the
may be one choice in such cases. Like the block LanfZhz  ¢onyentional conjugate gradient algorithm, which is de-
and block Dividsor{8], there are some other ways to form gjgned to minimize a general function, the current method
the iterative subspace to implement the block version of,poits special properties of eigenvalue problems, and thus
modified CG algorithm. For example, the iterative subspaceqnyerges much faster in many cases. During iterations, the
may contain only one gradient, plus all the current trial vec+yi5| vector at the step, is an approximate lowest eigenvec-
tors and some previous trial vectors. The_choice_ of iterativgy, in the subspace spanned by the initial trial vector and
subspace affects the convergence properties which needs fWpsequent gradient vectors. This is the reason for the rapid

ther investigations. For largey, e.g.,no>100, to our expe- convergence rate. The easy implementation of this algorithm
riences, block algorithm need more numeric cost and is lesg,akes it suitable for first principle calculations.

efficient as compared with the above sequential implementa-
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